6 удивительных веществ, бросающих вызов законам физики

Мы можем смеяться над нашими предками, считавшими порох волшебством и не понимавшими, что такое магниты, однако и в наш просвещённый век существуют материалы, созданные наукой, но похожие на результат настоящего колдовства. Зачастую эти материалы трудно получить, но оно того стоит.

1. Металл, который плавится в ваших руках

Существование жидких металлов, таких как ртуть, и способность металлов принимать жидкое состояние при определенной температуре общеизвестны. Но твёрдый металл, тающий в руках как мороженое — это необычное явление.

Этот металл называется галлием. Он плавится при комнатной температуре и для практического использования непригоден. Если поместить предмет из галлия в стакан с горячей жидкостью, он растворится прямо на ваших глазах. Кроме того, галлий способен сделать алюминий очень хрупким — достаточно просто поместить каплю галлия на алюминиевую поверхность.

2. Газ, способный удерживать твёрдые предметы

Этот газ тяжелее воздуха, и если наполнить им закрытый контейнер, он осядет на дно. Так же, как вода, гексафторид серы способен выдержать менее плотные объекты, например, кораблик из фольги. Бесцветный газ удержит предмет на своей поверхности, и создастся впечатление, что кораблик парит. Гексафторид серы можно вычерпать из контейнера обычным стаканом — тогда кораблик плавно опустится на дно. 

Кроме того, за счет своей тяжести газ снижает частоту любого звука, проходящего сквозь него, и если вдохнуть немного гексафторида серы, ваш голос будет звучать как зловещий баритон Доктора Зло.

3. Гидрофобные покрытия

Зелёная плитка на фото — вовсе не желе, а подкрашенная вода. Она находится на плоской пластине, по краям обработанной гидрофобным покрытием. Покрытие отталкивает воду, и капли принимают выпуклую форму. В середине белой поверхности есть идеальный необработанный квадрат, и вода скапливается там. Капля, помещенная на обработанную область, немедленно потечет к необработанной части и сольётся с остальной водой. Если вы макнёте обработанный гидрофобным покрытием палец в стакан с водой, он останется полностью сухим, а вокруг него образуется «пузырь» — вода будет отчаянно пытаться убежать от вас. На основе таких веществ планируется создание водоотталкивающей одежды и стёкол для автомобилей.

4. Спонтанно взрывающийся порошок

Нитрид трииода выглядит как комок грязи, но внешность обманчива: этот материал настолько нестабилен, что легкого касания пера достаточно, чтобы произошел взрыв. Используется материал исключительно для экспериментов — его опасно даже перемещать с места на место. Когда материал взрывается, появляется красивый фиолетовый дым. Аналогичным веществом является фульминат серебра — он также не применяется нигде и годится разве что для изготовления бомбочек.

5. Горячий лёд

Горячий лёд, известный также как ацетат натрия, представляет собой жидкость, затвердевающую при малейшем воздействии. От простого прикосновения он из жидкого состояния мгновенно трансформируется в твёрдый как лёд кристалл. На всей поверхности образуются узоры, как на окнах в мороз, процесс продолжается несколько секунд — пока всё вещество не «замёрзнет». При нажатии образуется центр кристаллизации, от которого молекулам по цепочке передается информация о новом состоянии. Конечно, в итоге образуется вовсе не лёд — как следует из названия, вещество на ощупь довольно тёплое, охлаждается очень медленно и используется для изготовления химических грелок.

6. Металл, обладающий памятью

Нитинол, сплав никеля и титана, имеет впечатляющую способность «запоминать» свою первоначальную форму и возвращаться к ней после деформации. Всё, что для этого требуется — немного тепла. Например, можно капнуть на сплав тёплой водой, и он примет первоначальную форму независимо от того, насколько сильно был до этого искажён. В настоящее время разрабатываются способы его практического применения. Например, было бы разумно делать из такого материала очки — если они случайно погнутся, нужно просто подставить их под струю теплой воды. Конечно, неизвестно будут ли когда-нибудь делать из нитинола автомобили или ещё что-то серьёзное, но свойства сплава впечатляют.

 

 

Источник ➝

Электрические пули капитана Немо

В фантастических романах Жюля Верна «20 000 лье под водой» и «Таинственный остров» рассказывается о смертельно опасном оружии – пневматических ружьях, стреляющих электрическими пулями.

"Электрическое ружьё капитана Немо". Макет

Можно ли создать такие пули на самом деле? И, если можно, почему их до сих пор не используют охотники или военные?

Для начала – слово автору:

«Эти ружья заряжены не обычными пулями, а снарядом, изобретенным австрийским химиком Лениброком. У меня имеется изрядный запас таких снарядов.

Эти стеклянные капсюли, заключенные в стальную оболочку с тяжёлым свинцовым дном, – настоящие лейденские банки в миниатюре! Они содержат в себе электрический заряд высокого напряжения. При самом лёгком толчке они разряжаются, и животное, каким бы могучим оно ни было, падает замертво. Прибавлю, что эти капсюли не крупнее дроби номер четыре и что обойма ружья вмещает не менее десяти зарядов».

А вот результат действия этих пуль:

Только после тщательного исследования Пенкроф заметил – у одного пирата на лбу, у других на груди, у третьего на спине, еще у одного на плече – маленькое, едва заметное красное пятнышко, происхождение которого невозможно было установить.

– Эти пятнышки – причина их смерти, – сказал Сайрес Смит.

Начнём с «лейденской банки». Изобретённая ещё в 1745 году лейденская банка – это самый первый в мире электрический конденсатор, устройство для накопления электрического заряда.

Лейденская банка

Лейденскую банку можно увидеть в школьном кабинете физики – по сути это обычный стеклянный стакан, оклеенный снаружи и изнутри несоприкасающимися слоями фольги. Во время опытов учитель заряжает банку (обычно от дискового генератора Уимсхёрста, но можно сделать это даже от простой расчёски, наэлектризованной трением о волосы), а затем разрядником «извлекает» эффектные искры.

Замечание 1: конденсатор накапливает именно электрический заряд, который измеряется в кулонах. «Электрический заряд высокого напряжения» в тексте Верна – бессмыслица, нонсенс. Напряжение– это совершенно другая величина, которая измеряется в вольтах (ватт/ампер или джоуль/кулон). Любой школьник, посещающий радиокружок, знает, что итоговое напряжение на обкладках конденсатора при зарядке равняется напряжению источника питания. А если мы превысим некое номинальное напряжение, то конденсатор у нас «пробьёт» – он превратится в обычный проводник тока.

Теперь о размерах пуль. «Дробь номер четыре» – это металлические шарики диаметром 3.25 мм. А потому...

Замечание 2: заряд конденсатора, то есть его способность накапливать электричество, зависит от площади обкладок, то есть – от размера конденсатора. Даже если мы будем использовать самые совершенные в мире материалы, мы не сможем «разогнать» до большой электрической ёмкости конденсатор размером с дробинку и не сможем обеспечить высокое номинальное напряжение.

Современный пусковой конденсатор ёмкостью 500 микрофарад с номинальным напряжением 300 вольт, то есть действительно способный «чувствительно тряхнуть» человека, весит ни много ни мало порядка 200 граммов! Крупновато для дробинки, не правда ли?

Конденсатор 300 V

Замечание 3: Свои «электрические пули» капитан Немо изобрёл, вообще говоря, для подводной охоты. Однако морская вода – великолепный проводник электричества, поэтому такая пуля, выпущенная в воду, начнёт стремительно разряжаться. Электрический ток, как известно, выбирает кратчайший путь – так что, если заряд у пули действительно большой, в момент вылета из ствола она будет представлять для стреляющего намного большую опасность, чем для потенциальной добычи!

Замечание 4: Для того, чтобы поразить пирата, «электрическая капсула» должна была соприкоснуться с оголённой кожей (причём крайне желательно – влажной кожей!). Даже слой обычной ткани в состоянии существенно снизить её эффективность, не говоря уже о плотной кожаной куртке с поддетой рубашкой. А для того, чтобы ток пошёл в землю через тело – и тем самым получил возможность если не убить пирата, но хотя бы «тряхнуть» хорошенько – пиратам ещё нужно было ещё и снять с себя сапоги... Как-то сомнительно представить себе, что все пираты, выходя на схватку с капитаном Немо, предварительно, как сговорившись, разулись и разделись до пояса.

Если же отойти от теории и поговорить о практике, то... Американская компания Taser в 2002 году выпустила на рынок пулю XREP – по сути, это был выстреливаемый из обычного ружья электрошокер. Однако она, во первых, намного крупнее «электрической пули» капитана Немо (калибр 18 мм):

Электрическая пуля Taser XREP

Во-вторых, она предназначена для нелетального поражения, то есть должна вывести противника на какое-то время из строя, но не убить. В-третьих, на испытаниях выяснилось, что обычное механическое («ударное») действие такой пули намного опаснее электрического. В-четвёртых, испытания показали полную непригодность таких пуль при работе по целям в одежде (см. выше замечание 4) – так что даже на современном уровне технологий концепция «выстреливаемого заряженного конденсатора» потерпела неудачу.

Однако откуда же всё-таки Жюль Верн взял идею «электрической пули»?

Книга «20 000 лье под водой» была издана в 1869 году. А в 1866 году во французской газете «Монд» была опубликована следующая любопытная заметка: «Австрийский химик, по слухам, изобрёл электрическую пулю, которая взрывается, подобно молнии, проникая в тело».

Вот вам и разгадка! Однако дальнейшее чтение заметки быстро даёт понять, что речь идёт не об «электрической пуле», а о металлической пуле, которая разгоняется в стволе магнитным полем– как в современных экспериментальных прототипах рельсотронов и гаусс-пушек (боевые образцы убийственно мощных переносных «рейл-ганов», «рельсотронов» и прочих «гауссовок» на сегодняшний день, к счастью, существуют только в компьютерных играх).

"Гауссовка" из компьютерной игры-стрелялки

 

 

Популярное в

))}
Loading...
наверх