Когда железо устаёт...

Руины антенны радиотелескопа в Грин-Бэнк

​​​​​​​

Вечером 15 ноября 1988 года Грэг Монк, оператор радиотелескопа обсерватории Грин-Бэнк (Западная Виргиния, США), заступил на очередное дежурство. Своей работой учёный гордился – ещё бы, ему повезло работать с самым большим в мире радиотелескопом с полностью подвижной антенной! Чудовищных размеров «тарелка» – диаметром с футбольное поле и высотой в 25-этажный дом – медленно разворачивалась для наведения на нужный участок звёздного неба. Монк включил приёмно-усилительную аппаратуру, заправил бумажные ленты в самописцы.

..

Радиотелескоп Грин-Бэнк, 60-е годы

Радиотелескоп Грин-Бэнк, 60-е годы

Радиотелескоп Грин-Бэнк был построен в 1962 году в самом центре так называемой «Национальной зоны радиомолчания» в США. В этой местности строго запрещены любые мощные радиопередатчики; да что там радиопередатчики – даже беспроводные телефоны, микроволновые печи и вай-фай роутеры! Такая «радиотишина» нужна именно для работы телескопа, слушающего сигналы из самых далёких уголков Вселенной.

Именно исследования на телескопе Грин-Бэнк позволили определить форму и размеры нашей Галактики, а также выдвинуть гипотезу о существовании тёмной материи. К 1988 году телескоп морально устарел, но работал отлично. Прочнейшая стальная конструкция была рассчитана на ветер со скоростью 130 км/час и нагрузку до 400 тонн выпавшего снега!

...Часы показывали 21 час 43 минуты. Внезапно оператор услышал громкий треск, а затем – низкий раскатистый грохот, «как будто прямо над головой пролетает реактивный самолёт». В лабораторию влетел неизвестно откуда взявшийся здоровенный кусок стали – подобно артиллерийскому снаряду, он разнёс вдребезги туалет, а затем и систему подачи электричества. Все приборы отключились. Потолок начал угрожающе прогибаться вниз.

Грэг Монк еле успел выскочить из помещения. Во дворе стояла машина учёного – её тоже прошило насквозь стальными обломками! На глазах у выбегающих сотрудников обсерватории 90-метровая антенна оседала, сминалась, скрючивалась, будто гигантский лопнувший гриб, «будто она была сделана не из стали, а из сахара» – как впоследствии вспоминал один из очевидцев. Через 5 минут на месте одного из лучших в мире радиотелескопов лежала бесформенная груда металлических конструкций...

Вот где это произошло

Вот где это произошло

Что же произошло? Почему прочнейшая сталь вдруг «дала слабину»? Расследование показало: всему виной стала трещина в одной из стальных опорных пластин телескопа; причиной трещины стала так называемая «усталость металла». Да-да, металл тоже может уставать – под воздействием циклических нагрузок или вибраций его прочность медленно падает, а затем, в какой-то момент металл разламывается. Обрушение радиотелескопа Грин-Бэнк – далеко не единственная катастрофа, виной которой стала усталость металла; можно вспомнить и страшное крушение поезда в 1842 году во Франции, и катастрофу самолёта «Де Хэвилленд Комет» в 1954 году (он внезапно развалился в воздухе), и обрушение пешеходного моста в Пушкино в 1977 году, и аварию 2009 года на Саяно-Шушенской ГЭС...

Руины антенны радиотелескопа в Грин-Бэнк

Руины антенны радиотелескопа в Грин-Бэнк

Как «работает» усталость металла? Возьмите старую тонкую пластмассовую линейку. Если согнуть её в дугу, она не сломается; однако если мы согнём и разогнём её с десяток раз, а потом возьмём увеличительное стекло, то увидим на пластике крохотные «жилки» – трещинки. Согнём и разогнём линейку ещё раз 50 – и маленькие трещинки сольются в одну большую, по которой линейка развалится пополам. Сталь многократно прочнее пластмассы – однако механизм действия практически тот же самый: нагрузка то есть, то её нет, то снова есть – и так десятки тысяч раз подряд. Образуются микротрещины, их становится всё больше и больше, наконец, деталь не выдерживает и раскалывается.

Новый радиотелескоп Грин-Бэнк

Новый радиотелескоп Грин-Бэнк

История с телескопом Грин-Бэнк закончилась благополучно. Во-первых, при катастрофе никто не погиб. Во-вторых, власти США смогли найти необходимые средства, и в 2001 году в строй вступил новый радиотелескоп обсерватории Грин-Бэнк – тоже с полноповоротной антенной, только диаметром уже 100 метров. Однако катастрофы, связанные с усталостью металла, заканчиваются «хорошо» далеко не всегда...

Источник ➝

Электрические пули капитана Немо

В фантастических романах Жюля Верна «20 000 лье под водой» и «Таинственный остров» рассказывается о смертельно опасном оружии – пневматических ружьях, стреляющих электрическими пулями.

"Электрическое ружьё капитана Немо". Макет

Можно ли создать такие пули на самом деле? И, если можно, почему их до сих пор не используют охотники или военные?

Для начала – слово автору:

«Эти ружья заряжены не обычными пулями, а снарядом, изобретенным австрийским химиком Лениброком. У меня имеется изрядный запас таких снарядов.

Эти стеклянные капсюли, заключенные в стальную оболочку с тяжёлым свинцовым дном, – настоящие лейденские банки в миниатюре! Они содержат в себе электрический заряд высокого напряжения. При самом лёгком толчке они разряжаются, и животное, каким бы могучим оно ни было, падает замертво. Прибавлю, что эти капсюли не крупнее дроби номер четыре и что обойма ружья вмещает не менее десяти зарядов».

А вот результат действия этих пуль:

Только после тщательного исследования Пенкроф заметил – у одного пирата на лбу, у других на груди, у третьего на спине, еще у одного на плече – маленькое, едва заметное красное пятнышко, происхождение которого невозможно было установить.

– Эти пятнышки – причина их смерти, – сказал Сайрес Смит.

Начнём с «лейденской банки». Изобретённая ещё в 1745 году лейденская банка – это самый первый в мире электрический конденсатор, устройство для накопления электрического заряда.

Лейденская банка

Лейденскую банку можно увидеть в школьном кабинете физики – по сути это обычный стеклянный стакан, оклеенный снаружи и изнутри несоприкасающимися слоями фольги. Во время опытов учитель заряжает банку (обычно от дискового генератора Уимсхёрста, но можно сделать это даже от простой расчёски, наэлектризованной трением о волосы), а затем разрядником «извлекает» эффектные искры.

Замечание 1: конденсатор накапливает именно электрический заряд, который измеряется в кулонах. «Электрический заряд высокого напряжения» в тексте Верна – бессмыслица, нонсенс. Напряжение– это совершенно другая величина, которая измеряется в вольтах (ватт/ампер или джоуль/кулон). Любой школьник, посещающий радиокружок, знает, что итоговое напряжение на обкладках конденсатора при зарядке равняется напряжению источника питания. А если мы превысим некое номинальное напряжение, то конденсатор у нас «пробьёт» – он превратится в обычный проводник тока.

Теперь о размерах пуль. «Дробь номер четыре» – это металлические шарики диаметром 3.25 мм. А потому...

Замечание 2: заряд конденсатора, то есть его способность накапливать электричество, зависит от площади обкладок, то есть – от размера конденсатора. Даже если мы будем использовать самые совершенные в мире материалы, мы не сможем «разогнать» до большой электрической ёмкости конденсатор размером с дробинку и не сможем обеспечить высокое номинальное напряжение.

Современный пусковой конденсатор ёмкостью 500 микрофарад с номинальным напряжением 300 вольт, то есть действительно способный «чувствительно тряхнуть» человека, весит ни много ни мало порядка 200 граммов! Крупновато для дробинки, не правда ли?

Конденсатор 300 V

Замечание 3: Свои «электрические пули» капитан Немо изобрёл, вообще говоря, для подводной охоты. Однако морская вода – великолепный проводник электричества, поэтому такая пуля, выпущенная в воду, начнёт стремительно разряжаться. Электрический ток, как известно, выбирает кратчайший путь – так что, если заряд у пули действительно большой, в момент вылета из ствола она будет представлять для стреляющего намного большую опасность, чем для потенциальной добычи!

Замечание 4: Для того, чтобы поразить пирата, «электрическая капсула» должна была соприкоснуться с оголённой кожей (причём крайне желательно – влажной кожей!). Даже слой обычной ткани в состоянии существенно снизить её эффективность, не говоря уже о плотной кожаной куртке с поддетой рубашкой. А для того, чтобы ток пошёл в землю через тело – и тем самым получил возможность если не убить пирата, но хотя бы «тряхнуть» хорошенько – пиратам ещё нужно было ещё и снять с себя сапоги... Как-то сомнительно представить себе, что все пираты, выходя на схватку с капитаном Немо, предварительно, как сговорившись, разулись и разделись до пояса.

Если же отойти от теории и поговорить о практике, то... Американская компания Taser в 2002 году выпустила на рынок пулю XREP – по сути, это был выстреливаемый из обычного ружья электрошокер. Однако она, во первых, намного крупнее «электрической пули» капитана Немо (калибр 18 мм):

Электрическая пуля Taser XREP

Во-вторых, она предназначена для нелетального поражения, то есть должна вывести противника на какое-то время из строя, но не убить. В-третьих, на испытаниях выяснилось, что обычное механическое («ударное») действие такой пули намного опаснее электрического. В-четвёртых, испытания показали полную непригодность таких пуль при работе по целям в одежде (см. выше замечание 4) – так что даже на современном уровне технологий концепция «выстреливаемого заряженного конденсатора» потерпела неудачу.

Однако откуда же всё-таки Жюль Верн взял идею «электрической пули»?

Книга «20 000 лье под водой» была издана в 1869 году. А в 1866 году во французской газете «Монд» была опубликована следующая любопытная заметка: «Австрийский химик, по слухам, изобрёл электрическую пулю, которая взрывается, подобно молнии, проникая в тело».

Вот вам и разгадка! Однако дальнейшее чтение заметки быстро даёт понять, что речь идёт не об «электрической пуле», а о металлической пуле, которая разгоняется в стволе магнитным полем– как в современных экспериментальных прототипах рельсотронов и гаусс-пушек (боевые образцы убийственно мощных переносных «рейл-ганов», «рельсотронов» и прочих «гауссовок» на сегодняшний день, к счастью, существуют только в компьютерных играх).

"Гауссовка" из компьютерной игры-стрелялки

 

 

Популярное в

))}
Loading...
наверх